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CRITICISMS AND DISCUSSIONS. 

A MATHEMATICAL STUDY OF MAGIC SQUARES. 

A NEW ANALYSIS. 

Magic squares are not simple puzzles to be solved by the old 
rule of "Try and try again," but are visible results of "order" as 

applied to numbers. Their construction is therefore governed by 
laws that are as fixed and immutable as the laws of geometry. 

It will be the object of this essay to investigate these laws, and 
evolve certain rules therefrom. Many rules have already been pub 
lished by which various magic squares may be constructed, but they 
do not seem to cover the ground comprehensively. It is the belief 
of the writer that the rules herein given will be competent to pro 
duce all forms of 3X3 and 4X4 squares with their compounds, and 

Fig. i. Fig. 2. Fig. 3 Fig. 4. 

also that the principles enunciated will apply largely to all other 

magic squares. 

Let Fig. i represent a 3X3 magic square. By inspection we 
note that : 

h + c = b -f- m 

and h-\-m 
= 

g -\- c 

therefore 2h = b + g 

In this way four equations may be evolved as follows: 

2h = b -f- g 
2n - b-\-d 
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2C = d -\- m 

2a = m + g 

It will be seen that the first terms of these equations are the 

quantities which occur in the four corner cells, and therefore that 
the quantity in each corner cell is a mean between the two quan 
tities in the two opposite cells that are located in the middle of 
the outside rows. It is therefore evident that the least quantity in 
the magic square must occupy a middle cell in one of the four 
outside rows, and that it cannot occupy a corner cell. 

Since the middle cell of an outside row must be occupied by the 
least quantity, and since any of these cells may be made the middle 

cell of the upper row by rotating the square, we may consider this 

cell to be so occupied. 
Having thus located the least quantity in the square it is plain 

that the next higher quantity must be placed in one of the lower 
corner cells, and since a simple reflection in a mirror would reverse 

the position of the lower corner cells, it follows that the second 
smallest quantity may occupy either of these corner cells. Next we 

may write more equations as follows: 

a + e + n - S (or summation) 
d + e + g = S 
h + e + c = S 

also 

a+d+h=S 
n + g + c = S 

therefore 

3ez=S 
and 

e = S/3 
Hence the quantity in the central cell is an arithmetical mean 

between any two quantities with which it forms a straight row or 

column. 

With these facts in view a magic square may now be constructed 
as shown in Fig. 2. 

Let x, representing the least quantity, be placed in the middle 

upper cell, and x + y in the lower right-hand corner cell, y being 
the increment over x. 

Since x + y is the mean between x and the quantity in the left 

hand central cell, this cell must evidently contain x + 2y. 
Now writing x -f- v in the lower left-hand corner cell, (con 



274 THE MONIST. 

sidering v as the increment over x) it follows that the central right 
hand cell must contain x + 2v. 

Next, as the quantity in the central cell in the square is a mean 

between x -j- 2y and x + 2v, it must be filled with x + v + y. It 
now follows that the lower central cell must contain x + 2v -j- 2y, 
and the upper left-hand corner cell x + 2v + y, and finally the 

upper right-hand corner cell must contain x + v + 23/, thus com 

pleting the square which necessarily must have magic qualifications 
with any conceivable values which may be assigned to x, v, and y. 

We may now proceed to give values to x, v, and y which will 

produce a 3X3 magic square containing the numbers 1 to 9 in 
clusive in arithmetical progression. Evidently x must equal 1, and 
as there must be a number 2, either v or y must equal 1 also. 

Assuming 3/ = 1, if v = 1 or 2, duplicate numbers would re 

sult, therefore v must equal at least 3. 
In the square under consideration the central number must be 

5 and as this number is composed of x -f- y + v, therefore v must 

equal 3. Using these values, viz., x = 1, y = 1 and v = 3, the 
familiar 3X3 magic square shown in Fig. 3 is produced. 

It is important to recognize the fact that although in Fig. 3 
the series of numbers used has an initial number of 1, and also a 
constant increment of 1, yet this may be considered as only an 
accidental feature pertaining to this particular square, the real fact 

being that a magic square of 3 X 3 is always composed of three sets 

of three numbers each. The difference between the numbers of 
each trio is uniform, but the difference between the last term of one 
trio and the first term of the next trio is not necessarily the same as 
the difference between the numbers of the trios. 

For example, if x = 2, y 
- 

5 and v - 8, the resulting square 
will be as shown in Fig. 4. 

The trios in this square are as follows : 

2- 7-12 

io- 15 
- 20 

18 - 23 
- 28 

The difference between the numbers of these trios is y = 5, 
and the difference between the homologous numbers is v - 8. 

A recognition of these tivo sets of increments is essential to the 

proper understanding of the magic square. Their existence is masked 
in the 3X3 square shown in Fig. 3 by the more or less accidental 

quality that in this particular square the difference between ad 
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jacent numbers ts always 1. Nevertheless the square given in Fig. 
3 is really made up of three trios, as follows : 

ist trio i - 2 - 3 

2nd 
" 

4 
- 

5 
- 6 

3rd 
" 

7 - 8 - 9 
in which the difference between the numbers of the trios is y = 1, 
and the difference between the homologous numbers is v = 3. 
Furthermore it is simply an accidental quality of this particular 
square that the difference between the last term of a trio and the 
first term of the next trio is 1. 

Having thus acquired a clear conception of the structure of a 

3X3 magic square, we are in a position to examine a 9 X 9 com 

pound square intelligently, this square being only an expansion of 
the 3X3 square, and governed by the same constructive rules. 

Referring to Fig. 6 the upper middle cells of the nine sub 

squares may first be filled in the same way that the nine cells in 

Fig. 2 were filled, using for this purpose the terms, x, t, and s. 

Using these as the initial terms of the subsquares the square may 
then be completed, using y as the increment between the terms of 
each trio, and v as the increment between the homologous terms of 
the trios. The result is shown in Fig. 5, in which the assignment of 
any values to x, y, v, t and s, will yield a perfect, compound 9X9 
square. 

Values may now be assigned to x, y, v, t and s which will pro 
duce the series 1 to 81 inclusive. As stated before in connection 
with the 3X3 square, x must naturally equal 1, and in order to 

produce 2, one of the remaining symbols must equal 1. In order 
to avoid duplicates, the next larger number must at least equal 3, 
and by the same process the next must not be less than 9 and the 

remaining one not less than 27. Because 1 + 1 + 3 + 9 + 27:zz4I> 
which is the middle number of the series 1-81, therefore just 
these values must be assigned to the five symbols used in the con 
struction of the square. The only symbol whose value is fixed, 
however, is x, the other four symbols may have the values 1-3 

- 
9 or 27 assigned to them indiscriminately, thus producing all the 

possible variations of a 9 X 9 compound magic square. 
If v is first made 1 and y = 2, and afterwards y is made 1 and 

v = 2, the resulting squares will be simply reflections of each other, 
etc. Six fundamental forms of 9 X 9 compound magic squares 
may be constructed as shown in Figs. 7, 8, and 9. 
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It will be noted that these are arranged in three groups of two 

squares each on account of the curious fact that the squares in each 

pair are mutually convertible into each other by the following 
process : 

If the homologous cells of each 3X3 subsquare be taken in the 
order as they occur in the 9X9 square, and a 3 X 3 square made 

therefrom, a new magic 3X3 square will result. And if this process 
is followed with all the cells and the resulting nine 3X3 squares are 

arranged in magic square order a new 9X9 compound square will 
result. 

For example, referring to the upper square in Fig. 7, if the 
numbers in the central cells of the nine 3X3 subsquares are ar 

ranged in magic square order, the resulting square will be the 
central 3X3 square in the lower 9X9 square in Fig. 7. This law 
holds good in each of the three groups of two squares (Figs. 7, 8 
and 9) and no fundamental forms other than these can be con 
structed. 

*\y\*\3f 
g \cL\a \g 

9 I CL 

c 
y_ 
b 

-I* 

/S /0 

/2 

*\s\9\/6 

Fig. io. Fig. II. Fig. 12, Fig. 13. 

The question may be asked : How many variations of 9 X 9 

compound magic squares can be made? Since each subsquare may 
assume any of eight aspects without disturbing the general order of 

the complete square, and since there are six radically different, or 

fundamental forms obtainable, the number of possible variations is 

6X89! 
We may now proceed to analyze the construction of a 4 X 4 

magic square as represented in Fig. io. From our knowledge of this 

square and its qualifications we are enabled to write four equations 
as follows: 

a-\-h-\-p-\-y 
- S (Summation) 

g -f- h -f- n +m = S 
11 -\- 0 -\- p -\- s 

- 
S 

t o -\- n -\- d - S 

By inspection of Fig. io it is seen that the sum of the initial 
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terms of these four equations equals S, and likewise that the sum 
of their final terms also equals 5\ Hence h-\-n-\-o-\-p=:S. It 
therefore follows: 

ist. That the sum of the terms contained in the inside 2X2 
square 0/04X4 square is equal to S. 

2d. Because the middle terms of the two diagonal columns com 

pose this inside 2X2 square, their end terms, or the terms in the 

four corner cells of the 4X4 square must also equal S} or : 

a-{-d-\-t-\-y 
= S 

3d. Because the two middle terms of each of the two inside 
columns (either horizontal or perpendicular) also compose the cen 
tral 2X2 square, their four end terms must likewise equal S. 

4th. We may now write the following equations : 

b-\-c-{-v-{-x=zS 

b+c+a+d=S 
therefore 

a + d - v -f x, 

which shows that the sum of the terms in any two contiguous comer 
cells is equal to the sum of the terms in the two middle cells in the 

opposite outside column. 

5th. Because 

g-\-hJrn-\-m 
= S 

and 

o-{-h-\-n-{-p 
- S 

it follows that 

g+m-o+p 

or, that the sum of the two end terms of any inside column, (either 
horizontal or perpendicular) is equal to the sum of the two middle 
terms in the other parallel column. 

6th. Since 

t+o+n+d=S 
and 

h-\-o-\-n-{-p 
- S 

therefore 

t+d=h+p 

or the sum of the two end terms of a diagonal column is equal to 
the sum of the two inside terms of the other diagonal column. 

These six laws govern all 4X4 magic squares whether they 
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are perfect or imperfect, but perfect 4X4 squares also possess the 
additional feature that the sum of the numbers in any two cells that 
are equally distant from the center and symmetrically opposite to 
each other in the square equals S/2. 

With these rules before us we may now construct a perfect 
4X4 magic square. Referring to Fig. 11, in the upper left-hand 
corner cell we will place a number which may be represented by 
a -f- x, and in the right-hand upper corner a number represented 
by a + v. Also in the central cells of the lower row we will write 
numbers represented respectively by a + y and a + t. Then in the 
lower left-hand cell we will place a number represented by g -f- x, 
and in the central cells of the outer right-hand column numbers 

represented respectively by b + x and c + *> and because the square 
is to be perfect, we must write in the lower right-hand corner a num 
ber represented by g + v. 

The unfinished perfect 4X4 square thus made may now be 
studied by the light of the laws previously given. 

By inspection we see that 

a + g = b + c 

and 
x -f- y 

- 
y -f- t 

We also see that the central cells of the upper row should be 

occupied by the symbol g together with x and v, by law 4, but if 
thus occupied, duplicate numbers would result. 

It has, however, been just shown that 

x + v = y + t 

and therefore g may be combined with y and t, thus producing 
diverse numbers, and still remaining correct in summation. 

Seeing that the square is to be perfect, the cell which is sym 
metrically opposite to that occupied by a + y, must be filled by a 
number which will produce with a + y, a number equal to (a + x) 
+ ( + v)f which will be g + t, because 

x + v = y + t 

In the same way the next cell to the left must be filled with 

g + yf and we may similarly fill the two inner cells of the left-hand 
outer column with b + v and c + v. 

By like simple calculations all the remaining empty cells may 
be filled, thus completing the 4X4 square shown in Fig. 12. 
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We will now proceed to show what numbers may be assigned 
to the eight symbols used in Fig. 12 to produce a perfect 4X4 

magic square containing the numbers 1 to 16. 
It is evident that some pair of symbols must equal 1 and 

therefore that one of the two symbols must equal 1 and the other 
must equal o, (minus and fractional quantities being excluded). 

It is also evident that because a + g = b + c, if a is the 
smallest number in the series, g must be the largest, and therefore 
the four numbers represented by a, b} c, g must form a series in 
which the means equal the extremes. In like manner x, y, t, v must 
also form another similar series. 

Supposing now that x = 1 and a = o, then g + v must equal 
16, and since b and c are each less than g, and must be also diverse 

from each other, we find that g cannot be less than 3. Supposing 
therefore that g = $, then because a + g = 3 = b + c, it is evident 
that b must equal 1 (or 2) and c must equal 2 (or 1). The four 

quantities a, b, c, g may therefore be assigned values as given below. 

a = o x = i 

b-i y=5 
c = 2 t = 9 
= 3 ^=13 

As g + v = 16, must equal 13 and 3/ + t must equal 14. 
By inspection it is seen that either y or t must equal 5, and assigning 
this number to y, t becomes 9, or vice versa. 

With these values assigned to the symbols, Fig. 12 will develop 
the perfect 4X4 square shown in Fig. 13. 

The possible number of diverse 4X4 magic squares which may 
be constructed using the numbers 1 to 16 inclusive has been vari 

ously estimated by different writers, 880 changes having been here 
tofore considered the maximum number. It can however be easily 
proven that no less than 4352 of these squares may be constructed, 
which will be demonstrated under the next heading. 

A STUDY OF THE POSSIBLE NUMBER OF VARIATIONS IN 
MAGIC SQUARES. 

It has been shown in connection with the 3X3 magic square 
that there is only one possible arrangement of nine different num 

bers, which will constitute a magic square. 
The 4X4 and all larger squares may however be constructed 
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in great variety, their number of diverse forms increasing in an 
immense ratio with every increase in the size of square. 

Beginning with the 4X4 square, in order to solve the problem 
of the possible number of variations that may be constructed with 
the numbers 1 to 16 inclusive, it will be necessary to consider the 
relative properties of its component elements, which may be con 

veniently expressed as follows, although there are several other sets 
of eight numbers whose combinations will yield similar results. 

a = i x = o 

b 
- 

2 y = 4 

c = s t=8 

g 
= 4 v =12 

As previously stated, it will be seen that 

a + g - b + c 

and x + v = y + t. 

In consequence of this law we find that a column in a 4 X 4 

magic square may contain each of the eight qualities once (as in 
the diagonal rows of square shown in Fig. 12). In other cases a 

pair of elements may be lacking, but be represented by another 

pair, the latter being repeated in the column, (as shown in the two 
outer vertical columns of Fig. 12). This ability to duplicate some 
of the elements in place of others that are omitted leads to an 
enormous amplification of the number of possible variations. 

If all the cells in any column are filled, (or any set of four 

cells, the summation of which is equal to a column) the remainder 
of the square may then be completed by the rules previously given. 
This column may therefore be termed a "basic" row or column. 

There are four plans by which a basic row may be filled, thus 

making four classes of squares which may be called Classes, I, II, 
III and IV. 

For the sake of brevity, the symbols a, b, c and g will be termed 
the "a" elements, and x3 y, t and v the "x" elements. 

Class I includes those squares in which the basic row is made 

up of all of the eight elements used once each. 
Class II includes those squares in which one of the elements 

used in the first cell of the basic row is also used in the second cell. 
Class III includes those squares in which an element of the 

first cell in the basic row is also used in the third cell. 
Class IV includes those squares in which elements of the first 

cell in the basic row are also used in the second and third cells. 
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Class I may be further divided into three Genera as follows : 
Genus A comprises those squares in which neither the outer nor 

inner pair of cells contain either a mean or an extreme pair of "a" 
or "x" elements. Fig. 14 represents a basic row of Class I, Genus A. 

Genus B comprises those squares in which both the inner and 
outer pair of cells of the basic row contain a pair of elements as 
shown in Fig. 15 in which the outer cells contain a pair of "a" 
elements (a and g) and the inner cells also contain a pair of "a" 
elements (b and c). 

Genus C comprises those squares in which both pairs of cells 

9 

Fig. 14. Fig. 15. Fig. 16. 

contain two pairs of elements each, as for example when the two 

outer cells contain a and g, and x and v, and the two inner cells con 

tain b and c, and t and y, as shown in Fig. 16. 

Classes II, III, and IV have but one genus each, and there are 

consequently in all, six different types. To determine the number of 

specimens which each genus will yield, we will now expand a basic 
row into a complete square. 

a 
y 

a 
t 

Fig. 17. Fig. 18. 

Fig. 17 shows a 4 X 4 square in the upper row of which the 
elements are written as previously given under Class I, Genus A. 

Filling the inner pair of cells in the lower row we see that these cells 
must contain a -f- v and c + y, but we have the choice of writing 
c + y in the right or left-hand cell. Choosing the right-hand cell 
the square is then completed by the laws previously given, and but 

slight attention is required to show that the contents of each cell 
is forced by these laws. 

This square will be magic for any values assigned to the ele 
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merits, and it will be normal if they are given the values 1, 2, 3, 4 
and 0, 4, 8, 12. 

To find the number of possible squares of the above class and 

genus we reflect that for the first cell we have a choice of 16. For 
the fourth cell we have a choice of only 4, since in the example, 
having used a and y in the first cell we are debarred from using 
either a, y, g or t in the fourth cell. Next, for the two central cells, 
we evidently have a choice of 4, and in completing the square we 
have the choice of two methods to fill the lower row. Multiplying 
the number of choices we have 

16 X 4 X 4 X 2= 512. 

and it is therefore clear that Class I, Genus A will yield 512 pos 
sible forms of squares. 

Fig. 18 shows a square in which the basic row of elements are 

arranged so as to produce Class I Genus B. In filling the central 
cells of the lower row, it is found that the equivalent of (a + y) + 
(g -f- x) must be used, and there are three such equivalents, viz., 

(1) (a + X) + (g + y) 
(2) (b + x) + (c + y) 
(3) (b + y) + (c + x). 

(3) however will be found impossible, leaving only (1) and 

(2) available. Choosing (1) it will be seen that there are two 
choices since a + x may be located in either the right or left-hand 
of the two cells. Similarly if (2) is chosen, b + x may be placed 
in either of these cells. Hence in, say, the right-hand central lower 

cell, there may be placed: 
(1) a + x 
(2) g + y 
(3) b + x 
(4) c + y 

as shown in Fig. 18, and when one of these four pairs of elements 
is used the remainder of the square becomes fixed. It therefore 

follows that for the first cell of the basic row there is a choice of 
16. For the fourth cell of same row there is a choice of 4. For 
the central cells of same row there is a choice of 4 and for the 
lower row there is a choice of 4. Multiplying these choices together 

we have 

16X4X4X4 = 1024. 

which is the possible number of variations of Class I, Genus B. 



CRITICISMS AND DISCUSSIONS. 285 

Writing a basic row of Class I, Genus C as given in Fig. 16, 
we find that the equivalents of (a + x) + (g + rnust be used 
to fill the central cells of the lower row. Because 

0+g 
- b + c 

and x + v = t + 3/ 

there are no less than sixteen pairs which may be made all equal 
to each other. Ten of these pairs however will be found unavailable, 
leaving six pairs to choose from, and since each of these six pairs 

may be located in either of the two cells, there is a choice of 12 
different ways in which the lower row may be filled. 

For the first cell of the basic row, there is naturally a choice of 
16. For the fourth cell of the same row there is no choice, as this 
cell must be filled with the complements of the first cell. For the 
two middle cells of the basic row there is a choice of 4. Multiplying 
these choices together we have: 

16X4X12 = 768, 

which is the possible number of variations of Class I, Genus C. 

9 

Fig 19. Fig. 20. 

Proceeding now to Class II, a basic row may be formed as 

given in Fig. 19. It is evident that neither a nor g can be used in 
the lower row of the square, but as equivalents of 

(a + v) + (g + y) 
we may use either of the two couples : 

(c + y) + (b + v) 
(b + y) + (c+v), 

and since either couple may be placed in either of two cells, there is 
a choice of 4 variations. To form the basic row, we have for the 
first cell a choice of 16 as before. For the fourth cell there is a 
choice of 6 seeing that one of the elements of the first cell must be 
located therein, coupled with any one of the three remaining ele 

ments of the opposite group. For the two inner cells there is a 
choice of 2. Hence for Class II we have: 

16X6X2X4 = 768 varieties. 
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Class III has a basic row constituted as shown in Fig. 20. It 

will be found impossible to construct a magic square from the above 
basic row along the lines hitherto followed. Nevertheless, four 
varieties of squares may be constructed on every basic row of this 

class, on account of certain relations between the two groups of 
elements which have not as yet been considered. The squares may 
be made as herein before shown, but when completed they appear 
to be imperfect, as will be seen in Figs. 21, 22, 23, and 24 which 

Fig. 21. Fig. 22. Fig. 23. Fig. 24. 

illustrate four squares built up on the foregoing basic row. These 

squares although seemingly imperfect, are not actually so on account 
of a peculiar relationship between the numbers 1, 2, 3, 4 and 0, 4, 
8, 12. 

Class III has for the first cell of the basic row a choice of 16, 
for the third cell a choice of 6, for the second cell a choice of 2, and 
of each of the above forms there are 4 variations. Hence we have: 

/ /0 // /6 

$ /z Jvs 

/4 z / J 

///oy 

Fig. 25. Fig. 26. Fig. 27. 

16X6X2X4 = 768 varieties 
in this class. 

Class IV has a basic row as shown in Fig. 25, and the two 

middle cells of the lower row may be filled with either of the two 

couples 
(b+t) + (c + y) 

or (b + y) + (c+ t) 
thus permitting a choice of 4. Having a choice of 16 for the first 

/0 /6 

/z 

7 
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cell of the basic row, and a choice of 4 for the two inner cells of this 

row, we have as a total: 

16X4X4 = 256. 

This square however has a peculiar property, owing to each 

couple of cells containing a pair of elements, wThich permits two 
variants to be made after each sub-basic row has been fixed. This 

property is illustrated in Figs. 26 and 27, in which both of the upper 
and lower rows are alike, and yet the squares are diverse. For class 
IV we therefore have: 

256X2 = 512 varieties. 

Summarizing the preceding results it will be seen that there 
are in 

Class I, Genus A, 512 varieties 

I, 
" 

B, 1024 " 
C, 768 I 

II 
II 

III 
IV, 

768 
768 
768 
512 

Total 4352 varieties. 

There are thus at least 4352 diverse forms of 4 X 4 magic 
squares which may be constructed with the numbers 1 to 16. 

Passing on to the 5X5 square, its analysis may be omitted, 
as the principles that underlie the formation of the 3X3 and 4X4 
squares also enter largely into the formation of this and all other 

squares. 

It may therefore be taken for granted that the components may 
be formed by the successive addition of five qualities in one group 
to the five qualities in another group. 

In order that the 5X5 square may consist of the numbers 
i to 25 inclusive, the following values may be assigned to the 

respective symbols: 
a - O 

b=i 
c = 2 

d = 3 
g = 4 

x = I 

y = 6 
t - II 

s - 16 

v - 21. 

Other values might be used but the foregoing are probably 
best adapted for general purposes. 
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A brief study of this square will indicate that the basic row may 
be constructed in a very large number of different ways. 

For the first cell there is a choice of 25 combinations of ele 

ments, for the second cell 16, for the third 9, for the fourth, 4, 
while for the fifth there is naturally no choice, there being only one 
available combination left. We therefore have at the very least 

25 X 16 X 9 X 4 = 14400 
possible variations in the basic row of this square. 

To complete the square, there are at least three available plans, 
and the resulting squares may be designated as Classes I, II and 
III respectively. 

Class I is made by writing the symbols of the "a" group of 
elements in diagonal columns across the square, in one direction, 
say from left to right, and the symbols of the "x" group also in 

diagonal columns, but in the opposite direction as shown in Fig. 28. 

9 

CZ'I CL 

Fig. 28. Fig. 29. Fig. 30, 

It will be seen that the "a" elements occupy the right-hand 
diagonal columns and the "x" elements the left-hand diagonal 
columns. It is also evident that irrespective of the way in which 
the basic row may be filled, the square may be completed by 

making "a" or "x" elements occupy either the right or left-hand 

diagonal column, and hence there is a choice of two methods; in 
the one case, the center cell being filled with a-\-v, and in the other 

(as shown in Fig. 28) it is filled with g + x. 
Class II. The Squares in this class are constructed by making 

the elements in the basic row move by "knight's moves." For 

example, if the left-hand corner cell of the basic row contains the 

symbols of b + v, these symbols (and also all the other components 
of the basic row) may assume the relative positions shown in Fig. 
29. It is clear that in this case there is the option of exchanging 
the places of b + v throughout the square, thus giving a choice of 
two ways. 
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Class III is made by combining the method of Class I with that 
of Class II as shown in Fig. 30. One element (and naturally all 
of its fellows in the group) runs diagonally while the other element 
is placed by knight's moves. There is consequently a choice of two 

elements, either of which may dominate the diagonals or be located 

by knight's moves. In the case shown in Fig. 30 it is evident that 
"a" may occupy the cells marked "a" or those marked "a1," there 

being eight possible knight's moves from any cell. This fact gives 
still another choice of two different ways, so there is a choice of 

four methods in Class III. 

Summarizing the foregoing results: 
For the basic row there is a choice of 14400. 

For Class I squares 2 X 14400 = 28800 
For Class II squares 2 X 14400 = 28800 
For Class III squares 4 X 14400 = 57600 

115200. 

So there are at least 115200 different ways in which a perfect 
5X5 square may be made. 

According to the figures herein given the number of variations 
of the different sizes of squares that have been considered increases 
as follows: 

3X3 square 1 

4X4 
" 

4,352 
5X5 

" 
115,200. 

NOTES ON NUMBER SERIES USED IN THE CONSTRUCTION OF 

MAGIC SQUARES. 

It has long been known that magic squares may be constructed 

from a series of numbers which do not progress in arithmetical 

order. Experiment will show, however, that any haphazard series 

cannot be used for this purpose, but that a definite order of sequence 
is necessary which will entail certain relationships between different 

members of the series. It will therefore be our endeavor in the 

present article to determine these relationships and express the same 

in definite terms. 

Let Fig. 31 represent a magic square of 4 X 4- By rule No. 4 
in the "New Analysis of Magic Squares" it is seen that "the sum of 
the terms in any two contiguous corner cells is equal to the sum of 



290 THE MONIST. 

the terms in the two middle cells in the opposite outside column/' 

Therefore, in Fig. 31, a -\- d = v s, and it therefore follows that 
a - v = s - d. In other words, these four quantities form a group 
with the interrelationship as shown. By the same rule (No. 4) it 
is also seen that a + t - I -f- p, and hence also, a - I - p 

- t, giv 
ing another group of four numbers having the same form of inter 

relationship, and since both groups have "a" as an initial number, 
it is evident that the increment used in one of these groups must 
be different from that used in the other, or duplicate numbers would 
result. It therefore follows that the numbers composing a magic 
square are not made up of a single group, but necessarily of more 
than one group. 

Since we have seen that the term "a" forms a part of two 

groups, we may write both groups as shown in Fig. 32, one hori 

zontally and the other perpendicularly. 
Next, by rule No. 5, it is shown that "the sum of the two end 

tr\v\s\sf 

a-v-s-d 
i 

/ 
I 

fi 
I 

t 

Fig. 31. Fig. 32. 

a - y s - d 
I I 

o 
i I 

p k 
I i 
t 6 

a-y~s-<r \ 

ll 

Fig. 33 Fig. 34 

terms of any inside column (either horizontal or perpendicular) is 

equal to the sum of the two middle terms in the other parallel col 
umn/' It therefore follows that v + b = k + o or v - o = k - b. 

Using the term v as the initial number, we write this series perpen 
dicularly as shown in Fig. 33. In the same way it is seen that 
/ -j- g = n + o, or / - 0 = n - g, thus forming the second hori 
zontal column in the square (Fig. 34). Next p + m = h + k or 

p 
- k - h - m, forming the third horizontal column and in this 

simple manner the square may be completed as shown in Fig. 35. 
It is therefore evident that a 4 X 4 magic square may be 

formed of any series of numbers whose interrelations are such as 
to permit them to be placed as shown in Fig. 35. 

The numbers 1 to 16 may be so placed in a great variety of 

ways, but the fact must not be lost sight of that, as far as the con 
struction of magic squares is concerned, they only incidentally 
possess the quality of being a single series in straight arithmetical 
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order, being really composed of as many groups as there are cells 
in a column of the square. Unless this fact is remembered, a clear 

conception of the quantities of the series cannot be formed. 
In illustration of the above remarks, three diagrams are given 

in Figs. 36, 37 and 38. Figs. 36 and 37 show arrangements of the 
numbers 1 to 16 from which the diverse squares Figs. 39 and 40 
are formed by the usual method of construction. 

u- y - s - d 
(Iii 

/ 
- o - n - 

g 
I ll ll * 

p -ft - h -irv 
lill 

Fig. 35 

/ -2 J - * 
I I I 

S - 
6-7 -<f 

N ll lt K 
9 -SO-// -/2 

lill 
A3 t 

Fig. 36. 

/ -2 //-/* 
lill 

J -9 - to 

-S-/ -/S 
lill 

5 -jr-/*-' 

Fig. 37. 

/0-/S* 2/-26 
N tl H ll 

/. ?-AP 
lill 

2 -/J <3 - C 

Fig. 38. 

Fig. 38 shows the arrangement of an irregular series of sixteen 

numbers, which, when placed in the order of magnitude run as 

follows : 

2-7-9-1 o-11 -12-14-15 -17-18-19-20-21 -26-30-33 

The magic square formed from this series is given in Fig. 41. 
In the study of these number series the natural question presents 

itself: Can as many diverse squares be formed from one series as 

from another? This question opens up a wide and but little ex 

plored region as to the diverse constitution of magic squares. This 

yo 

V* 

\/o 

/z 

\s \z\//\/ \ 

\'7 

\2 \ 

US 2/ 

30 

\20\9 \/\jO\ 
[7 

/J 

\/2 \S \9 S 

Fig. 39 Fig. 40. Fig. 41. Fig. 42, 

idea can therefore be merely touched upon in the present article, 

examples of several different plans of construction being given in 

illustration and the field left at present to other explorers. 
Three examples will be given, the first being what is sometimes 

termed a "perfect" square, or one in which any two numbers that 
are geometrically opposite and equidistant from the center of the 

square will be equal in summation to any other pair of numbers so 
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situated. The second example will be a square in which the sum 
of every diagonal of the four sub-squares of 2 X 2 is equal, and 
the third example will be a square in which the pairs of numbers 

having similar summations are arranged symmetrically in relation 
to a perpendicular line through the center of the square. Figs. 39, 
40 and 42 illustrate these three examples of squares. 

Returning now to the question previously given, but little re 
flection is required to show that it must be answered in the negative 
for the following reasons. Fig. 41 represents a magic square having 

3 - A3- /# - 28 
1111 

4 
I H 

2/-3/-3 - 46 
lill 

32 

36 

/J 

7 

3/ 

'4 

/J 

28 

z/ 

*7 

Fig. 41. Fig. 42. 

no special qualities excepting that the columns, horizontal, perpen 
dicular and diagonal all have the same summation, viz., 66. Hence 

any series of numbers that can be arranged as shown in Fig. 35 will 

yield magic squares as outlined. But that it shall also produce 
squares having the qualifications that are termed "perfect/' may 
or may not be the case accordingly as the series may or may not be 

capable of still further arrangement. 

/ pr 
/ /J 

S // 
/J 

20 

/s /8 2/ 24 27 

2Z 2S 28 3/ 4 

29 32 3J 38 J*J 

ZS 

3S 

JO 

ZO 

/S 
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A3 

ZS 
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2/ 

3/ 

'4 

24. 

4 

29 

27 

2 

'7 

Fig. 43 Fig. 44. 

Referring to Fig. 31, if we amend our definition by now call 

ing it a "perfect" square, we shall at once introduce the following 
continuous equation: 

a^y~hA-o~t^d~n^k-b^s~c^v=g^p-m-^l, 
and if we make our diagram of magic square producing numbers 
conform to these new requirements, the number of groups will at 
once be greatly curtailed. 
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The multiplicity of algebraical signs necessary in our amended 

diagram is so great that it can only be studied in detail, the complete 
diagram being a network of minus and equality signs. 

The result will therefore only be given here, formulated in the 

following laws which apply in large measure to all "perfect" squares. 
I. Perfect magic squares are made of as many series or groups 

of numbers as there are cells in a column. 
II. Each series or group is composed of as many numbers as 

there are groups. 

III. The differences between any two adjoining numbers of a 

series must obtain between the corresponding numbers of all the 
series. 

IV. The initial terms of the series compose another series, as 

do the second, third, fourth terms and so on. 

V. The differences between any adjoining numbers of these 

secondary series must also obtain between the corresponding terms 

of all the secondary series. 
The foregoing rules may be illustrated by the series and perfect 

square shown in Figs. 36 and 39. 
Following and consequent upon the foregoing interrelations of 

these numbers is the remarkable quality possessed by the "perfect" 
magic square producing series as follows : 

If the entire series is written out in the order of magnitude and 
the differences between the adjacent numbers are written below, 
the row of differences will be found to be geometrically arranged 
on each side of the center as will be seen in the following series 

taken from Fig. 43. 

3 
- 
4 -13-14-18-19-21-22-28-29-31-32-36-37-46-47 

1914121(6)1214191 
In the above example the number 6 occupies the center and the 

other numbers are arranged in geometrical order on each side of it. 

It is the belief of the writer that this rule applies to all "perfect" 
squares whether odd or even. 

The following example will suffice to illustrate the rule as 

applied to a 5 X 5 magic square, Fig. 45 showing the series and 

Fig. 46 the square. 

1.4.7.8 .10.II. 13.14.15-17.18.20.21.22.24.25.27.28.29.31.32.34.35.38.41 

3 3 I 2 I 2 I I2I2l|l2I2I i 2 i 2 i 3 3 

L. S. FRIERSON. 

FRIERSON, LA. 
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